供应H13模具钢,S136模具钢,DC53模具钢,skd11模具钢,440C不绣钢,8407模具钢等材料

快速成型技术的应用领域

时间:2021-09-07 15:26人气:编辑:钢铁之家
信息摘要:

  目前RP技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计)造型设计结构设计基本...

快速成型技术的应用领域

目前RP技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计)——造型设计——结构设计——基本功能评估——模拟样件试制这段开发过程。对某些以塑料结构为主的产品还可以进行小批量试制,或进行一些物理方面的功能测试、装配验证、实际外观效果审视,甚至将产品小批量组装先行投放市场,达到投石问路的目的。
  快速成型的应用主要体现在以下几个方面:
   (1)新产品开发过程中的设计验证与功能验证。RP技术可快速地将产品设计的CAD模型转换成物理实物模型,这样可以方便地验证设计人员的设计思想和产品结构的合理性、可装配性、美观性,发现设计中的问题可及时修改。如果用传统方法,需要完成绘图、工艺设计、工装模具制造等多个环节,周期长、费用高。如果不进行设计验证而直接投产,则一旦存在设计失误,将会造成极大的损失。
   (2)可制造性、可装配性检验和供货询价、市场宣传,对有限空间的复杂系统,如汽车、卫星、导弹的可制造性和可装配性用RP方法进行检验和设计,将大大降低此类系统的设计制造难度。对于难以确定的复杂零件,可以用RP,技术进行试生产以确定最佳的合理的工艺。此外,RP原型还是产品从设计到商品化各个环节中进行交流的有效手段。比如为客户提供产品样件,进行市场宣传等,快速成型技术已成为并行工程和敏捷制造的一种技术途径。
   (3)单件、小批量和特殊复杂零件的直接生产。对于高分子材料的零部件,可用高强度的工程塑料直接快速成型,满足使用要求;对于复杂金属零件,可通过快速铸造或直接金属件成型获得。该项应用对航空、航天及国防工业有特殊意义。
   (4)快速模具制造。通过各种转换技术将RP原型转换成各种快速模具,如低熔点合金模、硅胶模、金属冷喷模、陶瓷模等,进行中小批量零件的生产,满足产品更新换代快、批量越来越小的发展趋势。快速成型应用的领域几乎包括了制造领域的各个行业,在医疗、人体工程、文物保护等行业也得到了越来越广泛的应用。
  快速成型技术的主要应用各行业的应用状况如下:
   ◆汽车、摩托车:外形及内饰件的设计、改型、装配试验,发动机、汽缸头试制。
   ◆家电:各种家电产品的外形与结构设计,装配试验与功能验证,市场宣传,模具制造。
   ◆通讯产品:产品外形与结构设计,装配试验,功能验证,模具制造。
   ◆航空、航天:特殊零件的直接制造,叶轮、涡轮、叶片的试制,发动机的试制、装配试验。
   ◆轻工业:各种产品的设计、验证、装配,市场宣传,玩具、鞋类模具的快速制造。
   ◆医疗:医疗器械的设计、试产、试用,CT扫描信息的实物化,手术模拟,人体骨关节的配制。
   ◆国防:各种武器零部件的设计、装配、试制,特殊零件的直接制作,遥感信息的模型制作。
  总之,快速成型技术的发展是近20年来制造领域的突破性进展,它不仅在制造原理上与传统方法迥然不同,更重要的是在目前产业策略以市场响应速度为第一的状况下,RP技术可以缩短产品开发周期,降低开发成本,提高企业的竞争力。下面通过一些事例,说明该项技术在产品开发过程中起的作用。
  1.设计验证:用于新产品外观设计玲证和结构设计验今天钢材价格证,找出设计缺陷,完善产品设计。在现代产品设计中,设计手段日趋先进,计算机辅助设计使得产品设计快捷、直观,但由于软件和硬件的局限,设计人员仍无法直观地评价所设计产品的效果和结构的合理性以及生产工艺的可行性。快速成型技术为设计人员迅速得到产品样品,直观评判产品提供了先进的技术手段。我公司为某摩托车生产厂新型250摩托车制作的覆盖件样件,包括油箱、前后挡板、车座和侧盖等共13件。采用AFS成型技术,仅用12天就完成了全部制作。设计人员将样件装在车体上,经过认真评价和反复比较,对产品的外观做了重新修改,达到了理想状态。这一验证过程,使设计更趋完美,避免了盲目投产造成的浪费。
  2.装配验证:制出样品实件,进行装配实验。天津某公司委托我方加工传真机外壳及电话。用户不仅要进行外观评价,而且要将传真机的内部部件装入样件中,进行装配实验和结构评价。该公司首先选择传统加工方法,分块加工,手工粘结,仅加工一套电话听筒就耗资肆仟元,耗时20天。预计制作传真机样品需2个月,费用为2·5万元。我公司用快速成型技术,仅用15天就将该产品一套共六件交给委托方。用户在装配实验中发现了7处装配干涉和结构不合理处。将前后两种方法相比,传真机BABS塑料组装样件传统加工方法工序繁多,手工拼接费时、费力,材料浪费大、加工周期长。对复杂的结构和曲面,加工粗糙,尺寸精度低,制作的实物模型与设计模型之间不能建立一一对应的关系,因而在装配实验中很难检查出设计错误。而自动成型法,高度自动化,一次成型,周期短,精度高,与设计模型之间具有一一对应的关系,更适合样品组装件的生产和制造。
  3.功能验证:我公司为某摩托车厂制作250型双缸摩托车汽缸头。这是一款新设计的发动机,用户需要10件样品进行发动机的模拟实验。该零件具有复杂的内部结构,传统机加工无法加工,只能呆用铸造成型。整个过程需经过开模、制芯、组模、浇铸、喷砂和机加等工序,与实际生产过程相同。其中仅开模一项就需三个月时间。这对于小批量的样品制作无论在时间上还是成木上都是难以接受的。我们采用选区激光烧结技术,以精铸熔模材料为成型材料,在快速成型机上仅用5天即加工出该零件的10件铸造熔模,再经熔模铸造工艺,10天后得到了铸造毛坯。经过必要的机加工,30天即完成了此款发动机的试制。
  4.快速铸造:在制造业特别是航空、航天、国防、汽车等重点行业,共基础的核心部件一般均为金属零件,而且相当多的金属零件是非对称性的、有不规则曲面或结构复杂而内部又含有精细结构的零件。这些零件的生产常采用铸造或解体加工的方法。在铸造生产中,模板、芯盒、压蜡型、压铸模的制造往往是用机加工的方法来完成的,有时还需要钳工进行修整,不仅周期长、耗资大,而且从模具设计到加工制造是一个多环节的复杂过程,咯有失误就会导致全部返工。特别是对一些形状复杂的铸件,如叶片、叶轮、发动机缸体、缸盖等,模具的制造是一个难度更大的问题,即使使用数控加工中心等昂贵的设备,在加工技术与工艺可行性方面仍有很大困难。可以设想,如果遇到此类零件的试制或小批量生产,其制造周期、成本及风险是相当大的。
  激光快速成型技术已被证明是解决小批量复杂零件制造的非常有效的手段。迄今为止,我们己通过激光快速成型成功地生产了包括叶铃、叶片、发动机转子、泵体、发动机缸体、缸盖等千余仕扫盘钻件 我们将快速成型与铸造工艺的结合称为快速铸造工艺。图5给出了快速铸造工艺与传统铸造工艺的比较。由于快速铸造过程无须开模具,因而大大节省了制造周期和费用。图6是采用快速铸造方法生产的燃气二动机S段,零件直径80Omm,高410m们,按传统金属铸件方法制造,模具制造周期约需半年,费用几十万。用快速铸造方法,快速成型铸造熔模7天(分6段组合),拼装、组合、铸造10天,费用每件不超过2万(共6件)。用快速成型方法生产的新型坦克增压器的铸造熔模,我们用5天时间就完成了37件蜡模的生产,使整个试制任务比原计划提前了3个月。
  5.翻模成型:实际应用上,很多产品必须通过模具才能加工出来。用成型机先制作出产品样件再翻制模具,是一种既省时又节省费用的方法。发动机泵壳原型件产品用传统机加工方法很难加工,必须通过模具成型。据估算,开模时间要8个月,费用至少30万。如果产品设计有误,整套模具就全部报废。我们用快速成型法为该产品制作了塑料样件,作为模具母模用于翻制硅胶模。将该母模固定于铝标准模框中,浇入配好的硅橡胶,静置12·20小时,硅橡胶完全固化,打开模框,取出硅橡胶用刀沿预定分型线划开,将母模取出,用于浇铸泵壳蜡型的硅胶模即翻制成功。通过该模制出蜡型,经过涂壳、焙烧、失蜡、加压浇铸、喷砂,一件合格的泵壳铸件在短短的两个月内制造出来,经过必要的机加工,即可装机运行,使整个试制周期比传统方法缩短了三分之二,费用节省了四分之三。
  6.样品制作:制造产品替代品,用于展示新产品,进行市场宣传,如通讯、家电及建筑模型制作等。
  7.工艺和材料验证:快速制作各种蜡模,用于精铸新工艺和新型材料的摸索、验证以及新产品制造所需辅助工具及部件的试验。近无余量精铸叶片的实验品。首先按不同收缩率用成型机一次制作几个叶片蜡模,然后涂壳、编号、失蜡铸造。将所得叶片铸件进行测量,反复几次即可确定不同材料无余量精铸收缩率,为批量生产奠定基础。如果用开模具的办法进行此项试验,其费用和周期都将大大增加。发动机高速涡轮,要求材质高,铸件密实。使用激光快速自动成型机,制作精铸用蜡模四个,编号涂壳,使用不同配比特殊合金,分别浇铸,对所得四件样品进行测试,分别加以比较分析,即确定材料最佳配方。从制模到取得结果仅需一个月。
  8.反求工程与快速成型:成型机成型的一件摩托车的前面板样件,面板上包含了一个前大灯和二个侧灯的外罩,它们与面板构成一个完整的曲面。这是一个用反向工程进行零件详细设计的典型实例。整个工艺过程是首先由模型工根据摩托车的整体形象要求用油泥制作概念模型,经评审满意后用三座标测量仪进行数值化,测量数据用Pro/E软件的Scantools模块进行整理并转换成曲面模型,再转换成实体模型并进"细节"计。糟加筋、孔和车孔的轮廓
  等结构,最后由成型机制作出样件模型,经过打磨和喷漆的处理后装在摩托车上进行外观、装配等检验,整个过程从完成三座标测量到得到样件仅用一周时间。此时得到的样件模型巴不同于最初的油泥模型,而成为与实际零件壁厚、尺寸一致,筋、孔等结构齐全的零件模型,这比油泥模型无疑是一个很大的进步。如果这时需对模型进行修改,只需在CAD系统上就可完成。当模型的外观和细部结构确定无误后,就可利用最后的模型数据进行模具设计和加工.

标签:

发表评论

评论列表(条)

    本文链接:https://www.steels.org.cn/baike/zixun/3244.html

    版权声明:本站资源均来自互联网或会员发布,如果侵犯了您的权益请与我们联系,我们将在24小时内删除!谢谢!

    相关资讯
    热门频道

    热门标签